Copied to
clipboard

?

G = C42.155D10order 320 = 26·5

155th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.155D10, C10.972- (1+4), C4⋊C4.211D10, C202Q833C2, C42.C211D5, (C2×C20).92C23, C4.Dic1037C2, C42⋊D5.7C2, Dic53Q838C2, C20.131(C4○D4), (C4×C20).200C22, (C2×C10).241C24, D102Q8.13C2, C4.20(Q82D5), C4⋊Dic5.244C22, C22.262(C23×D5), C55(C22.35C24), (C2×Dic5).271C23, (C4×Dic5).154C22, (C22×D5).106C23, C2.60(D4.10D10), D10⋊C4.112C22, (C2×Dic10).188C22, C10.D4.124C22, C4⋊C4⋊D5.3C2, C10.118(C2×C4○D4), (C5×C42.C2)⋊14C2, C2.25(C2×Q82D5), (C2×C4×D5).140C22, (C5×C4⋊C4).196C22, (C2×C4).206(C22×D5), SmallGroup(320,1369)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.155D10
C1C5C10C2×C10C22×D5C2×C4×D5D102Q8 — C42.155D10
C5C2×C10 — C42.155D10

Subgroups: 590 in 192 conjugacy classes, 95 normal (19 characteristic)
C1, C2, C2 [×2], C2, C4 [×2], C4 [×13], C22, C22 [×3], C5, C2×C4, C2×C4 [×6], C2×C4 [×9], Q8 [×4], C23, D5, C10, C10 [×2], C42, C42 [×5], C22⋊C4 [×6], C4⋊C4 [×6], C4⋊C4 [×14], C22×C4, C2×Q8 [×2], Dic5 [×7], C20 [×2], C20 [×6], D10 [×3], C2×C10, C42⋊C2, C4×Q8 [×2], C22⋊Q8 [×2], C42.C2, C42.C2 [×4], C422C2 [×4], C4⋊Q8, Dic10 [×4], C4×D5 [×2], C2×Dic5, C2×Dic5 [×6], C2×C20, C2×C20 [×6], C22×D5, C22.35C24, C4×Dic5, C4×Dic5 [×4], C10.D4 [×6], C4⋊Dic5 [×8], D10⋊C4 [×6], C4×C20, C5×C4⋊C4 [×6], C2×Dic10 [×2], C2×C4×D5, C202Q8, C42⋊D5, Dic53Q8 [×2], C4.Dic10 [×4], D102Q8 [×2], C4⋊C4⋊D5 [×4], C5×C42.C2, C42.155D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×2], C24, D10 [×7], C2×C4○D4, 2- (1+4) [×2], C22×D5 [×7], C22.35C24, Q82D5 [×2], C23×D5, C2×Q82D5, D4.10D10 [×2], C42.155D10

Generators and relations
 G = < a,b,c,d | a4=b4=1, c10=b2, d2=a2, ab=ba, cac-1=dad-1=a-1, cbc-1=a2b-1, dbd-1=b-1, dcd-1=a2b2c9 >

Smallest permutation representation
On 160 points
Generators in S160
(1 94 50 68)(2 69 51 95)(3 96 52 70)(4 71 53 97)(5 98 54 72)(6 73 55 99)(7 100 56 74)(8 75 57 81)(9 82 58 76)(10 77 59 83)(11 84 60 78)(12 79 41 85)(13 86 42 80)(14 61 43 87)(15 88 44 62)(16 63 45 89)(17 90 46 64)(18 65 47 91)(19 92 48 66)(20 67 49 93)(21 124 149 114)(22 115 150 125)(23 126 151 116)(24 117 152 127)(25 128 153 118)(26 119 154 129)(27 130 155 120)(28 101 156 131)(29 132 157 102)(30 103 158 133)(31 134 159 104)(32 105 160 135)(33 136 141 106)(34 107 142 137)(35 138 143 108)(36 109 144 139)(37 140 145 110)(38 111 146 121)(39 122 147 112)(40 113 148 123)
(1 142 11 152)(2 25 12 35)(3 144 13 154)(4 27 14 37)(5 146 15 156)(6 29 16 39)(7 148 17 158)(8 31 18 21)(9 150 19 160)(10 33 20 23)(22 48 32 58)(24 50 34 60)(26 52 36 42)(28 54 38 44)(30 56 40 46)(41 143 51 153)(43 145 53 155)(45 147 55 157)(47 149 57 159)(49 151 59 141)(61 140 71 130)(62 101 72 111)(63 122 73 132)(64 103 74 113)(65 124 75 134)(66 105 76 115)(67 126 77 136)(68 107 78 117)(69 128 79 138)(70 109 80 119)(81 104 91 114)(82 125 92 135)(83 106 93 116)(84 127 94 137)(85 108 95 118)(86 129 96 139)(87 110 97 120)(88 131 98 121)(89 112 99 102)(90 133 100 123)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 50 59)(2 58 51 9)(3 8 52 57)(4 56 53 7)(5 6 54 55)(11 20 60 49)(12 48 41 19)(13 18 42 47)(14 46 43 17)(15 16 44 45)(21 36 149 144)(22 143 150 35)(23 34 151 142)(24 141 152 33)(25 32 153 160)(26 159 154 31)(27 30 155 158)(28 157 156 29)(37 40 145 148)(38 147 146 39)(61 90 87 64)(62 63 88 89)(65 86 91 80)(66 79 92 85)(67 84 93 78)(68 77 94 83)(69 82 95 76)(70 75 96 81)(71 100 97 74)(72 73 98 99)(101 132 131 102)(103 130 133 120)(104 119 134 129)(105 128 135 118)(106 117 136 127)(107 126 137 116)(108 115 138 125)(109 124 139 114)(110 113 140 123)(111 122 121 112)

G:=sub<Sym(160)| (1,94,50,68)(2,69,51,95)(3,96,52,70)(4,71,53,97)(5,98,54,72)(6,73,55,99)(7,100,56,74)(8,75,57,81)(9,82,58,76)(10,77,59,83)(11,84,60,78)(12,79,41,85)(13,86,42,80)(14,61,43,87)(15,88,44,62)(16,63,45,89)(17,90,46,64)(18,65,47,91)(19,92,48,66)(20,67,49,93)(21,124,149,114)(22,115,150,125)(23,126,151,116)(24,117,152,127)(25,128,153,118)(26,119,154,129)(27,130,155,120)(28,101,156,131)(29,132,157,102)(30,103,158,133)(31,134,159,104)(32,105,160,135)(33,136,141,106)(34,107,142,137)(35,138,143,108)(36,109,144,139)(37,140,145,110)(38,111,146,121)(39,122,147,112)(40,113,148,123), (1,142,11,152)(2,25,12,35)(3,144,13,154)(4,27,14,37)(5,146,15,156)(6,29,16,39)(7,148,17,158)(8,31,18,21)(9,150,19,160)(10,33,20,23)(22,48,32,58)(24,50,34,60)(26,52,36,42)(28,54,38,44)(30,56,40,46)(41,143,51,153)(43,145,53,155)(45,147,55,157)(47,149,57,159)(49,151,59,141)(61,140,71,130)(62,101,72,111)(63,122,73,132)(64,103,74,113)(65,124,75,134)(66,105,76,115)(67,126,77,136)(68,107,78,117)(69,128,79,138)(70,109,80,119)(81,104,91,114)(82,125,92,135)(83,106,93,116)(84,127,94,137)(85,108,95,118)(86,129,96,139)(87,110,97,120)(88,131,98,121)(89,112,99,102)(90,133,100,123), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,50,59)(2,58,51,9)(3,8,52,57)(4,56,53,7)(5,6,54,55)(11,20,60,49)(12,48,41,19)(13,18,42,47)(14,46,43,17)(15,16,44,45)(21,36,149,144)(22,143,150,35)(23,34,151,142)(24,141,152,33)(25,32,153,160)(26,159,154,31)(27,30,155,158)(28,157,156,29)(37,40,145,148)(38,147,146,39)(61,90,87,64)(62,63,88,89)(65,86,91,80)(66,79,92,85)(67,84,93,78)(68,77,94,83)(69,82,95,76)(70,75,96,81)(71,100,97,74)(72,73,98,99)(101,132,131,102)(103,130,133,120)(104,119,134,129)(105,128,135,118)(106,117,136,127)(107,126,137,116)(108,115,138,125)(109,124,139,114)(110,113,140,123)(111,122,121,112)>;

G:=Group( (1,94,50,68)(2,69,51,95)(3,96,52,70)(4,71,53,97)(5,98,54,72)(6,73,55,99)(7,100,56,74)(8,75,57,81)(9,82,58,76)(10,77,59,83)(11,84,60,78)(12,79,41,85)(13,86,42,80)(14,61,43,87)(15,88,44,62)(16,63,45,89)(17,90,46,64)(18,65,47,91)(19,92,48,66)(20,67,49,93)(21,124,149,114)(22,115,150,125)(23,126,151,116)(24,117,152,127)(25,128,153,118)(26,119,154,129)(27,130,155,120)(28,101,156,131)(29,132,157,102)(30,103,158,133)(31,134,159,104)(32,105,160,135)(33,136,141,106)(34,107,142,137)(35,138,143,108)(36,109,144,139)(37,140,145,110)(38,111,146,121)(39,122,147,112)(40,113,148,123), (1,142,11,152)(2,25,12,35)(3,144,13,154)(4,27,14,37)(5,146,15,156)(6,29,16,39)(7,148,17,158)(8,31,18,21)(9,150,19,160)(10,33,20,23)(22,48,32,58)(24,50,34,60)(26,52,36,42)(28,54,38,44)(30,56,40,46)(41,143,51,153)(43,145,53,155)(45,147,55,157)(47,149,57,159)(49,151,59,141)(61,140,71,130)(62,101,72,111)(63,122,73,132)(64,103,74,113)(65,124,75,134)(66,105,76,115)(67,126,77,136)(68,107,78,117)(69,128,79,138)(70,109,80,119)(81,104,91,114)(82,125,92,135)(83,106,93,116)(84,127,94,137)(85,108,95,118)(86,129,96,139)(87,110,97,120)(88,131,98,121)(89,112,99,102)(90,133,100,123), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,50,59)(2,58,51,9)(3,8,52,57)(4,56,53,7)(5,6,54,55)(11,20,60,49)(12,48,41,19)(13,18,42,47)(14,46,43,17)(15,16,44,45)(21,36,149,144)(22,143,150,35)(23,34,151,142)(24,141,152,33)(25,32,153,160)(26,159,154,31)(27,30,155,158)(28,157,156,29)(37,40,145,148)(38,147,146,39)(61,90,87,64)(62,63,88,89)(65,86,91,80)(66,79,92,85)(67,84,93,78)(68,77,94,83)(69,82,95,76)(70,75,96,81)(71,100,97,74)(72,73,98,99)(101,132,131,102)(103,130,133,120)(104,119,134,129)(105,128,135,118)(106,117,136,127)(107,126,137,116)(108,115,138,125)(109,124,139,114)(110,113,140,123)(111,122,121,112) );

G=PermutationGroup([(1,94,50,68),(2,69,51,95),(3,96,52,70),(4,71,53,97),(5,98,54,72),(6,73,55,99),(7,100,56,74),(8,75,57,81),(9,82,58,76),(10,77,59,83),(11,84,60,78),(12,79,41,85),(13,86,42,80),(14,61,43,87),(15,88,44,62),(16,63,45,89),(17,90,46,64),(18,65,47,91),(19,92,48,66),(20,67,49,93),(21,124,149,114),(22,115,150,125),(23,126,151,116),(24,117,152,127),(25,128,153,118),(26,119,154,129),(27,130,155,120),(28,101,156,131),(29,132,157,102),(30,103,158,133),(31,134,159,104),(32,105,160,135),(33,136,141,106),(34,107,142,137),(35,138,143,108),(36,109,144,139),(37,140,145,110),(38,111,146,121),(39,122,147,112),(40,113,148,123)], [(1,142,11,152),(2,25,12,35),(3,144,13,154),(4,27,14,37),(5,146,15,156),(6,29,16,39),(7,148,17,158),(8,31,18,21),(9,150,19,160),(10,33,20,23),(22,48,32,58),(24,50,34,60),(26,52,36,42),(28,54,38,44),(30,56,40,46),(41,143,51,153),(43,145,53,155),(45,147,55,157),(47,149,57,159),(49,151,59,141),(61,140,71,130),(62,101,72,111),(63,122,73,132),(64,103,74,113),(65,124,75,134),(66,105,76,115),(67,126,77,136),(68,107,78,117),(69,128,79,138),(70,109,80,119),(81,104,91,114),(82,125,92,135),(83,106,93,116),(84,127,94,137),(85,108,95,118),(86,129,96,139),(87,110,97,120),(88,131,98,121),(89,112,99,102),(90,133,100,123)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,50,59),(2,58,51,9),(3,8,52,57),(4,56,53,7),(5,6,54,55),(11,20,60,49),(12,48,41,19),(13,18,42,47),(14,46,43,17),(15,16,44,45),(21,36,149,144),(22,143,150,35),(23,34,151,142),(24,141,152,33),(25,32,153,160),(26,159,154,31),(27,30,155,158),(28,157,156,29),(37,40,145,148),(38,147,146,39),(61,90,87,64),(62,63,88,89),(65,86,91,80),(66,79,92,85),(67,84,93,78),(68,77,94,83),(69,82,95,76),(70,75,96,81),(71,100,97,74),(72,73,98,99),(101,132,131,102),(103,130,133,120),(104,119,134,129),(105,128,135,118),(106,117,136,127),(107,126,137,116),(108,115,138,125),(109,124,139,114),(110,113,140,123),(111,122,121,112)])

Matrix representation G ⊆ GL8(𝔽41)

400000000
040000000
004000000
000400000
0000001113
0000001930
0000111300
0000193000
,
00100000
00010000
400000000
040000000
00000010
00000001
00001000
00000100
,
22193290000
221232100000
32919220000
321019290000
0000782118
00001825200
000020233433
00002102316
,
19229320000
122210320000
93222190000
103229190000
0000341213
00002372020
0000213341
00002020237

G:=sub<GL(8,GF(41))| [40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,11,19,0,0,0,0,0,0,13,30,0,0,0,0,11,19,0,0,0,0,0,0,13,30,0,0],[0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[22,22,32,32,0,0,0,0,19,12,9,10,0,0,0,0,32,32,19,19,0,0,0,0,9,10,22,29,0,0,0,0,0,0,0,0,7,18,20,21,0,0,0,0,8,25,23,0,0,0,0,0,21,20,34,23,0,0,0,0,18,0,33,16],[19,12,9,10,0,0,0,0,22,22,32,32,0,0,0,0,9,10,22,29,0,0,0,0,32,32,19,19,0,0,0,0,0,0,0,0,34,23,21,20,0,0,0,0,1,7,3,20,0,0,0,0,21,20,34,23,0,0,0,0,3,20,1,7] >;

50 conjugacy classes

class 1 2A2B2C2D4A4B4C···4H4I4J4K4L4M···4Q5A5B10A···10F20A···20L20M···20T
order12222444···444444···45510···1020···2020···20
size111120224···41010101020···20222···24···48···8

50 irreducible representations

dim111111112222444
type+++++++++++-+-
imageC1C2C2C2C2C2C2C2D5C4○D4D10D102- (1+4)Q82D5D4.10D10
kernelC42.155D10C202Q8C42⋊D5Dic53Q8C4.Dic10D102Q8C4⋊C4⋊D5C5×C42.C2C42.C2C20C42C4⋊C4C10C4C2
# reps1112424124212248

In GAP, Magma, Sage, TeX

C_4^2._{155}D_{10}
% in TeX

G:=Group("C4^2.155D10");
// GroupNames label

G:=SmallGroup(320,1369);
// by ID

G=gap.SmallGroup(320,1369);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,758,219,268,675,297,192,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=b^2,d^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^2*b^-1,d*b*d^-1=b^-1,d*c*d^-1=a^2*b^2*c^9>;
// generators/relations

׿
×
𝔽